Noé de Rancourt

Université Paris VII, IMJ-PRG

Winter School in Abstract Analysis, section Set theory & Topology

Hejnice, January 30, 2018

Infinite-dimensional Ramsey theory is about coloring infinite sequences of objects.

Theorem (Mathias-Silver)

Let \mathcal{X} be an analytic set of infinite subsets of \mathbb{N} . Then there exists $M \subseteq \mathbb{N}$ infinite such that:

- either for every infinite $A \subseteq M$, we have $A \in \mathcal{X}$;
- or for every infinite $A \subseteq M$, we have $A \notin \mathcal{X}$.

Here, the set A can be viewed as an increasing sequence of integers.

Let FIN denote the set of finite subsets of \mathbb{N} . Given a sequence $A_0 < A_1 < A_2 < \ldots$ of nonempty elements of FIN, a *block-sequence* is a sequence of the form $\bigcup_{i \in B_0} A_i, \ \bigcup_{i \in B_1} A_i, \ \bigcup_{i \in B_2} A_i, \ldots$ where $B_0 < B_1 < B_2 < \ldots$ is a sequence of nonempty elements of FIN.

Theorem (Milliken)

Let $\mathcal X$ be an analytic set of increasing sequences of nonempty elements FIN. Then there exists a sequence $A_0 < A_1 < A_2 < \dots$ of nonempty elements of FIN such that:

- either every block-sequence of (A_i) is in \mathcal{X} ;
- or no block-sequence of (A_i) is in \mathcal{X} .

A *pigeonhole principle* is a one-dimensional Ramsey result, i.e. a Ramsey result where you color objects.

A pigeonhole principle is a one-dimensional Ramsey result, i.e. a Ramsey result where you color objects. Every infinite-dimensional Ramsey result has an associated pigeonhole principle, which is obtained by coloring sequences according to their first term.

A pigeonhole principle is a one-dimensional Ramsey result, i.e. a Ramsey result where you color objects. Every infinite-dimensional Ramsey result has an associated pigeonhole principle, which is obtained by coloring sequences according to their first term.

The pigeonhole principle associated to Mathias-Silver's theorem is the following: for every coloring of the integers with two colors, there exists an infinite monochromatic subset.

A pigeonhole principle is a one-dimensional Ramsey result, i.e. a Ramsey result where you color objects. Every infinite-dimensional Ramsey result has an associated pigeonhole principle, which is obtained by coloring sequences according to their first term.

The pigeonhole principle associated to Mathias-Silver's theorem is the following: for every coloring of the integers with two colors, there exists an infinite monochromatic subset.

The pigeonhole principle associated to Milliken's theorem is:

Theorem (Hindman)

For every coloring of the nonempty elements of FIN, there exists a sequence $A_0 < A_1 < A_2 < \ldots$ of nonempty elements of FIN such that all the sets of the form $\bigcup_{i \in B} A_i$, for $B \in \text{FIN} \setminus \{\emptyset\}$, have the same color.

A pigeonhole principle is a one-dimensional Ramsey result, i.e. a Ramsey result where you color objects. Every infinite-dimensional Ramsey result has an associated pigeonhole principle, which is obtained by coloring sequences according to their first term.

The pigeonhole principle associated to Mathias-Silver's theorem is the following: for every coloring of the integers with two colors, there exists an infinite monochromatic subset.

The pigeonhole principle associated to Milliken's theorem is:

Theorem (Hindman)

For every coloring of the nonempty elements of FIN, there exists a sequence $A_0 < A_1 < A_2 < \dots$ of nonempty elements of FIN such that all the sets of the form $\bigcup_{i \in B} A_i$, for $B \in \text{FIN} \setminus \{\emptyset\}$, have the same color.

Can we still get something interesting without pigeonhole principle?

The first Ramsey-type result without pigeonhole principle is by Gowers, for Banach spaces.

The first Ramsey-type result without pigeonhole principle is by Gowers, for Banach spaces.

Fix E a Banach space. Recall that a (normalized) sequence $(e_i)_{i\in\mathbb{N}}$ of E is called a *Schauder basis* if for every $x\in E$, there exists a unique sequence $(x^i)_{i\in\mathbb{N}}$ of scalars such that $x=\sum_{i=0}^{\infty}x^ie_i$.

The first Ramsey-type result without pigeonhole principle is by Gowers, for Banach spaces.

Fix E a Banach space. Recall that a (normalized) sequence $(e_i)_{i\in\mathbb{N}}$ of E is called a *Schauder basis* if for every $x\in E$, there exists a unique sequence $(x^i)_{i\in\mathbb{N}}$ of scalars such that $x=\sum_{i=0}^{\infty}x^ie_i$.

A block-sequence of (e_i) is a sequence $(x_i)_{i\in\mathbb{N}}$ of (normalized) vectors of E with $\text{supp}(x_0) < \text{supp}(x_1) < \text{supp}(x_2) < \dots$ A block-subspace is a (closed) subspace spanned by a block-sequence.

The first Ramsey-type result without pigeonhole principle is by Gowers, for Banach spaces.

Fix E a Banach space. Recall that a (normalized) sequence $(e_i)_{i\in\mathbb{N}}$ of E is called a *Schauder basis* if for every $x\in E$, there exists a unique sequence $(x^i)_{i\in\mathbb{N}}$ of scalars such that $x=\sum_{i=0}^\infty x^i e_i$.

A block-sequence of (e_i) is a sequence $(x_i)_{i\in\mathbb{N}}$ of (normalized) vectors of E with $\text{supp}(x_0) < \text{supp}(x_1) < \text{supp}(x_2) < \dots$ A block-subspace is a (closed) subspace spanned by a block-sequence.

We want a Ramsey result where we color block-sequences and where we find a monochromatic block-subspace.

The first Ramsey-type result without pigeonhole principle is by Gowers, for Banach spaces.

Fix E a Banach space. Recall that a (normalized) sequence $(e_i)_{i\in\mathbb{N}}$ of E is called a *Schauder basis* if for every $x\in E$, there exists a unique sequence $(x^i)_{i\in\mathbb{N}}$ of scalars such that $x=\sum_{i=0}^{\infty}x^ie_i$.

A block-sequence of (e_i) is a sequence $(x_i)_{i\in\mathbb{N}}$ of (normalized) vectors of E with $\text{supp}(x_0) < \text{supp}(x_1) < \text{supp}(x_2) < \dots$ A block-subspace is a (closed) subspace spanned by a block-sequence.

We want a Ramsey result where we color block-sequences and where we find a monochromatic block-subspace.

Notation

- For $A \subseteq S_E$ and $\delta > 0$, let $(A)_{\delta} = \{ y \in S_E \mid \exists x \in A \, || x y || \leq \delta \}$.
- ② For \mathcal{X} a set of block-sequences and Δ a sequence of positive numbers, let $(\mathcal{X})_{\Delta}$ be the set of block-sequences (y_n) for which there exists $(x_n) \in \mathcal{X}$ with $\forall n \in \mathbb{N} ||x_n y_n|| \leqslant \Delta_n$.

Definition

Say that E satisfies the approximate pigeonhole principle if for every $A \subseteq S_E$, for every (block) subspace $X \subseteq E$ and for every $\delta > 0$, there exists a (block) subspace $Y \subseteq X$ such that either $S_Y \subseteq (A)_{\delta}$, or $S_Y \subseteq (A^c)_{\delta}$.

Definition

Say that E satisfies the approximate pigeonhole principle if for every $A \subseteq S_E$, for every (block) subspace $X \subseteq E$ and for every $\delta > 0$, there exists a (block) subspace $Y \subseteq X$ such that either $S_Y \subseteq (A)_{\delta}$, or $S_Y \subseteq (A^c)_{\delta}$.

Theorem

E satisfies the approximate pigeonhole principle iff it is c_0 -saturated.

 \Leftarrow is by Gowers, \Rightarrow comes from a combination of a result by Milman, and another by Odell and Schlumprecht.

Theorem (Gowers' Ramsey-type theorem for c_0)

Let E be a c_0 -saturated Banach space with a Schauder basis (e_i) . Let Δ be a sequence of positive numbers, and $\mathcal X$ be an analytic set of block-sequences. Then there exists a block-subspace X such that:

- either no block-sequence of X is in X;
- or every block-sequence of X is in $(\mathcal{X})_{\Delta}$.

To remedy to the lack of pigeonhole principle, we introduce Gowers' game:

Definition

Let E be a Banach space with a Schauder basis (e_i) , let X be a block-subspace, and let \mathcal{X} be a set of block-sequences of (e_i) . Gowers' game $G_X(\mathcal{X})$ is defined as follows:

where the Y_i 's are block-subspaces of X, and the y_i 's are normalized vectors. Player II wins the game iff $(y_i)_{i\in\mathbb{N}}$ is a block-sequence that belongs to \mathcal{X} .

Theorem (Gowers' Ramsey-type theorem)

Let E be a Banach space with a Schauder basis (e_i) . Let Δ be a sequence of positive numbers, and $\mathcal X$ be an analytic set of block-sequences. Then there exists a block-subspace X such that:

- either no block-sequence of X is in X;
- or Π has a winning strategy in $G_X((\mathcal{X})_{\Delta})$.

Theorem (Gowers' Ramsey-type theorem)

Let E be a Banach space with a Schauder basis (e_i) . Let Δ be a sequence of positive numbers, and $\mathcal X$ be an analytic set of block-sequences. Then there exists a block-subspace X such that:

- either no block-sequence of X is in X;
- or Π has a winning strategy in $G_X((\mathcal{X})_{\Delta})$.

It turns out that this result has nothing to do with Banach spaces.

Let P be a set (the set of *subspaces*) and \leq and \leq * be two quasi-orderings on P, satisfying:

- for every $p, q \in P$, if $p \leqslant q$, then $p \leqslant^* q$;
- ② for every $p, q \in P$, if $p \leq^* q$, then there exists $r \in P$ such that $r \leq p$, $r \leq q$ and $p \leq^* r$;
- **③** for every \leq -decreasing sequence $(p_i)_{i \in \mathbb{N}}$ of elements of P, there exists $p^* \in P$ such that for all $i \in \mathbb{N}$, we have $p^* \leq p_i$;

Write $p \lesssim q$ for $p \leqslant q$ and $q \leqslant^* p$.

Let P be a set (the set of *subspaces*) and \leq and \leq * be two quasi-orderings on P, satisfying:

- for every $p, q \in P$, if $p \leqslant q$, then $p \leqslant^* q$;
- ② for every $p, q \in P$, if $p \leq^* q$, then there exists $r \in P$ such that $r \leq p$, $r \leq q$ and $p \leq^* r$;
- **③** for every \leq -decreasing sequence $(p_i)_{i \in \mathbb{N}}$ of elements of P, there exists $p^* \in P$ such that for all $i \in \mathbb{N}$, we have $p^* \leq p_i$;

Write $p \lesssim q$ for $p \leqslant q$ and $q \leqslant^* p$.

Let (X, d) be Polish metric space (the set of *points*) and $\triangleleft \subseteq X \times P$ a binary relation, satisfying:

- for every $p \in P$, there exists $x \in X$ such that $x \triangleleft p$.
- for every $x \in X$ and every $p, q \in P$, if $x \triangleleft p$ and $p \leqslant q$, then $x \triangleleft q$.

Let P be a set (the set of *subspaces*) and \leq and \leq * be two quasi-orderings on P, satisfying:

- for every $p, q \in P$, if $p \leqslant q$, then $p \leqslant^* q$;
- ② for every $p, q \in P$, if $p \leq^* q$, then there exists $r \in P$ such that $r \leq p$, $r \leq q$ and $p \leq^* r$;
- **③** for every \leq -decreasing sequence $(p_i)_{i \in \mathbb{N}}$ of elements of P, there exists $p^* \in P$ such that for all $i \in \mathbb{N}$, we have $p^* \leq p_i$;

Write $p \lesssim q$ for $p \leqslant q$ and $q \leqslant^* p$.

Let (X, d) be Polish metric space (the set of *points*) and $\triangleleft \subseteq X \times P$ a binary relation, satisfying:

- for every $p \in P$, there exists $x \in X$ such that $x \triangleleft p$.
- for every $x \in X$ and every $p, q \in P$, if $x \triangleleft p$ and $p \leqslant q$, then $x \triangleleft q$.

The sextuple $\mathcal{G} = (P, X, d, \leq, \leq^*, \lhd)$ is called an *approximate Gowers space*.

- The Mathias-Silver space:
 - $X = \mathbb{N}$, and $\forall x, y \in \mathbb{N} \ (x \neq y \Rightarrow d(x, y) = 1)$;
 - P is the set of infinite subsets of \mathbb{N} ;
- **②** For E a Banach space with a Schauder basis (e_i) , the standard Gowers space associated to E:
 - $X = S_E$ and d is the usual distance;
 - P is the set of block-subspaces of E;

 - \leq^* is the inclusion up to finite dimension ($F \leq^* G$ iff $F \cap G$ has finite codimension in F);
 - < is the membership relation.

Notation

- For $A \subseteq X$ and $\delta > 0$, let $(A)_{\delta} = \{ y \in X \mid \exists x \in A \ d(x,y) \leqslant \delta \}$.
- ② For $\mathcal{X} \subseteq X^{\omega}$ and Δ a sequence of positive numbers, let $(\mathcal{X})_{\Delta} = \{(y_n) \in X^{\omega} \mid \exists (x_n) \in \mathcal{X} \ \forall n \in \mathbb{N} \ d(x_n, y_n) \leqslant \Delta_n \}.$

Notation

- For $A \subseteq X$ and $\delta > 0$, let $(A)_{\delta} = \{ y \in X \mid \exists x \in A \ d(x,y) \leqslant \delta \}$.
- ② For $\mathcal{X} \subseteq X^{\omega}$ and Δ a sequence of positive numbers, let $(\mathcal{X})_{\Delta} = \{(y_n) \in X^{\omega} \mid \exists (x_n) \in \mathcal{X} \ \forall n \in \mathbb{N} \ d(x_n, y_n) \leqslant \Delta_n\}.$

Definition

Say that \mathcal{G} satisfies the *pigeonhole principle* if for every $A \subseteq X$, for every $p \in P$ and for every $\delta > 0$, there exists $q \leqslant p$ such that either $q \subseteq (A)_{\delta}$, or $q \subseteq (A^c)_{\delta}$. (Here, q is identified with $\{x \in X \mid x \lhd q\}$.)

Notation

- For $A \subseteq X$ and $\delta > 0$, let $(A)_{\delta} = \{ y \in X \mid \exists x \in A \ d(x,y) \leqslant \delta \}$.
- ② For $\mathcal{X} \subseteq X^{\omega}$ and Δ a sequence of positive numbers, let $(\mathcal{X})_{\Delta} = \{(y_n) \in X^{\omega} \mid \exists (x_n) \in \mathcal{X} \ \forall n \in \mathbb{N} \ d(x_n, y_n) \leqslant \Delta_n \}.$

Definition

Say that \mathcal{G} satisfies the *pigeonhole principle* if for every $A \subseteq X$, for every $p \in P$ and for every $\delta > 0$, there exists $q \leqslant p$ such that either $q \subseteq (A)_{\delta}$, or $q \subseteq (A^c)_{\delta}$. (Here, q is identified with $\{x \in X \mid x \triangleleft q\}$.)

- The Mathias-Silver space satisfies the pigeonhole principle;
- The pigeonhole principle for the standard Gowers space associated to
 E is precisely the approximate pigeonhole principle defined some
 slides ago.

Definition

Given $p \in P$ and $\mathcal{X} \subseteq X^{\mathbb{N}}$, Gowers' game $G_p(\mathcal{X})$ is defined as follows:

Player **II** wins the game iff $(x_i)_{i\in\mathbb{N}} \in \mathcal{X}$.

We now add some structure to compensate for the lack of ordering on X.

Consider a family $\mathcal K$ of compact subsets of X and a binary operation \oplus on $\mathcal K$, associative and commutative, satisfying the following conditions:

- $\forall K_1, K_2 \in \mathcal{K}, K_1 \cup K_2 \subseteq K_1 \oplus K_2$;
- For all $p \in P$ and all $K_1, K_2 \in \mathcal{K}$, if $K_1 \triangleleft p$ and $K_2 \triangleleft p$, then $K_1 \oplus K_2 \triangleleft p$.

(Here, $K \triangleleft p$ means that $\forall x \in K \times \triangleleft p$.)

We now add some structure to compensate for the lack of ordering on X.

Consider a family $\mathcal K$ of compact subsets of X and a binary operation \oplus on $\mathcal K$, associative and commutative, satisfying the following conditions:

- $\forall K_1, K_2 \in \mathcal{K}, K_1 \cup K_2 \subseteq K_1 \oplus K_2$;
- For all $p \in P$ and all $K_1, K_2 \in \mathcal{K}$, if $K_1 \triangleleft p$ and $K_2 \triangleleft p$, then $K_1 \oplus K_2 \triangleleft p$.

(Here, $K \triangleleft p$ means that $\forall x \in K \times \triangleleft p$.)

Definition

Given $p \in P$ and $\mathcal{X} \subseteq X^{\mathbb{N}}$, the strong asymptotic game $SF_p(\mathcal{X})$ is defined as follows:

where K_i 's are elements of \mathcal{K} . Player I wins the game iff for every sequence $A_0 < A_1 < \dots$ of subsets of \mathbb{N} , we have $(\bigoplus_{i \in A_0} K_i) \times (\bigoplus_{i \in A_1} K_i) \times \dots \subseteq \mathcal{X}$.

Theorem (dR.)

Let $p \in P$, Δ a sequence of positive numbers, and $\mathcal{X} \subseteq X^{\omega}$ analytic. Then there exists a $q \leqslant p$ such that:

- either I has a winning strategy in $SF_q(\mathcal{X}^c)$;
- or Π has a winning strategy in $G_q((\mathcal{X})_{\Delta})$.

Theorem (dR.)

Let $p \in P$, Δ a sequence of positive numbers, and $\mathcal{X} \subseteq X^{\omega}$ analytic. Then there exists a $q \leqslant p$ such that:

- either I has a winning strategy in $SF_q(\mathcal{X}^c)$;
- or Π has a winning strategy in $G_q((\mathcal{X})_{\Delta})$.

Moreover, if G satisfies the pigeonhole principle, the second conclusion can be replaced with the following (stronger) one:

• I has a winning strategy in $SF_q((\mathcal{X})_{\Delta})$

• To get Mathias-Silver's theorem, take for $\mathcal K$ the set of finite subsets of $\mathbb N$, and for \oplus the union. Then, in $SF_q(\mathcal X^c)$, \blacksquare just has to play a increasing sequence $\{n_0\}, \{n_1\}, \{n_2\}, \ldots$ of singletons, so any subsequence will be in $\mathcal X^c$.

- To get Mathias-Silver's theorem, take for $\mathcal K$ the set of finite subsets of $\mathbb N$, and for \oplus the union. Then, in $SF_q(\mathcal X^c)$, \blacksquare just has to play a increasing sequence $\{n_0\}, \{n_1\}, \{n_2\}, \ldots$ of singletons, so any subsequence will be in $\mathcal X^c$.
- To get Gowers' theorem, take for $\mathcal K$ the set of S_F 's, where $F\subseteq E$ is a finite-dimensional block-subspace, where $S_F\oplus S_G=S_{F+G}$. Then in $SF_q(\mathcal X^c)$, \blacksquare just has to play a sequence $K_0=\{x_{i_0},-x_{i_0}\}, K_1=\{x_{i_1},-x_{i_1}\},\ldots$, where $i_0< i_1<\ldots$ are integers and (x_i) is the canonical basis of the block-subspace q. Then every block-sequence of (x_{i_0},x_{i_1},\ldots) will belong to a set of the form $(\bigoplus_{i\in A_0}K_i)\times(\bigoplus_{i\in A_1}K_i)\times\cdots$.

Another interesting example

Lemma

A separable Banach space E is C-isomorphic to ℓ_2 if and only if every finite-dimensional subspace $F \subseteq E$ is C-isomorphic to $\ell_2^{\dim(F)}$.

Another interesting example

Lemma

A separable Banach space E is C-isomorphic to ℓ_2 if and only if every finite-dimensional subspace $F \subseteq E$ is C-isomorphic to $\ell_2^{\dim(F)}$.

Corollary

Let E be a separable Banach space, non-isomorphic to ℓ_2 . Let P be the set of (closed, infinite-dimensional) subspaces of E that are not isomorphic to ℓ_2 , \subseteq^* be the inclusion of subspaces up to finie dimension, and E be the usual distance on E. Then E then E is an approximate Gowers space.

Another interesting example

Corollary (dR. – Ferenczi)

Let E be a separable Banach space, non-isomorphic to ℓ_2 , Δ be a sequence of positive numbers, $\varepsilon > 0$ and $\mathcal{X} \subseteq S_E^\omega$ be analytic. Then there exists a closed, infinite-dimensional subspace $X \subseteq E$, non-isomorphic to ℓ_2 , such that:

- either X has an FDD $(F_n)_{n\in\mathbb{N}}$ with constant $\leqslant 1+\varepsilon$, such that $d_{BM}(F_n,\ell_2^{\dim(F_n)}) \underset{n\to\infty}{\longrightarrow} \infty$ and such that every normalized block-sequence of (F_n) is in \mathcal{X}^c ;
- or II has a winning strategy in $G_X((\mathcal{X})_{\Delta})$, when I only plays subspaces that are non-isomorphic to ℓ_2 .

Thank you for your attention!